Copied to
clipboard

G = C62.80D6order 432 = 24·33

28th non-split extension by C62 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: C62.80D6, C3312(C4⋊C4), (C3×C6).43D12, Dic3⋊(C3⋊Dic3), (C32×C6).6Q8, C6.31(S3×Dic3), (C3×C6).16Dic6, (C32×C6).44D4, (C3×Dic3)⋊1Dic3, C327(C4⋊Dic3), (C6×Dic3).11S3, (C32×Dic3)⋊3C4, C6.5(C322Q8), C6.18(C12⋊S3), C2.3(C338D4), C31(Dic3⋊Dic3), C6.13(C3⋊D12), C31(C12⋊Dic3), C2.1(C334Q8), C6.1(C324Q8), (C3×C62).10C22, C3213(Dic3⋊C4), (C2×C6).34S32, (C3×C6).92(C4×S3), C22.8(S3×C3⋊S3), C6.5(C2×C3⋊Dic3), C2.5(S3×C3⋊Dic3), (Dic3×C3×C6).7C2, (C6×C3⋊Dic3).3C2, (C2×C3⋊Dic3).5S3, (C3×C6).81(C3⋊D4), (C32×C6).41(C2×C4), (C2×C335C4).2C2, (C3×C6).39(C2×Dic3), (C2×Dic3).1(C3⋊S3), (C2×C6).16(C2×C3⋊S3), SmallGroup(432,452)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C62.80D6
C1C3C32C33C32×C6C3×C62Dic3×C3×C6 — C62.80D6
C33C32×C6 — C62.80D6
C1C22

Generators and relations for C62.80D6
 G = < a,b,c,d | a6=b6=1, c6=b3, d2=a3, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=b3c5 >

Subgroups: 984 in 220 conjugacy classes, 82 normal (26 characteristic)
C1, C2, C3, C3, C3, C4, C22, C6, C6, C6, C2×C4, C32, C32, C32, Dic3, Dic3, C12, C2×C6, C2×C6, C2×C6, C4⋊C4, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×Dic3, C2×C12, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, C62, C62, C62, Dic3⋊C4, C4⋊Dic3, C32×C6, C6×Dic3, C6×Dic3, C2×C3⋊Dic3, C2×C3⋊Dic3, C6×C12, C32×Dic3, C3×C3⋊Dic3, C335C4, C3×C62, Dic3⋊Dic3, C12⋊Dic3, Dic3×C3×C6, C6×C3⋊Dic3, C2×C335C4, C62.80D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C4⋊C4, C3⋊S3, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C3⋊Dic3, S32, C2×C3⋊S3, Dic3⋊C4, C4⋊Dic3, S3×Dic3, C3⋊D12, C322Q8, C324Q8, C12⋊S3, C2×C3⋊Dic3, S3×C3⋊S3, Dic3⋊Dic3, C12⋊Dic3, S3×C3⋊Dic3, C338D4, C334Q8, C62.80D6

Smallest permutation representation of C62.80D6
On 144 points
Generators in S144
(1 121 57 115 13 79)(2 122 58 116 14 80)(3 123 59 117 15 81)(4 124 60 118 16 82)(5 125 49 119 17 83)(6 126 50 120 18 84)(7 127 51 109 19 73)(8 128 52 110 20 74)(9 129 53 111 21 75)(10 130 54 112 22 76)(11 131 55 113 23 77)(12 132 56 114 24 78)(25 94 40 100 62 140)(26 95 41 101 63 141)(27 96 42 102 64 142)(28 85 43 103 65 143)(29 86 44 104 66 144)(30 87 45 105 67 133)(31 88 46 106 68 134)(32 89 47 107 69 135)(33 90 48 108 70 136)(34 91 37 97 71 137)(35 92 38 98 72 138)(36 93 39 99 61 139)
(1 55 21 7 49 15)(2 16 50 8 22 56)(3 57 23 9 51 17)(4 18 52 10 24 58)(5 59 13 11 53 19)(6 20 54 12 14 60)(25 64 44 31 70 38)(26 39 71 32 45 65)(27 66 46 33 72 40)(28 41 61 34 47 67)(29 68 48 35 62 42)(30 43 63 36 37 69)(73 125 117 79 131 111)(74 112 132 80 118 126)(75 127 119 81 121 113)(76 114 122 82 120 128)(77 129 109 83 123 115)(78 116 124 84 110 130)(85 101 139 91 107 133)(86 134 108 92 140 102)(87 103 141 93 97 135)(88 136 98 94 142 104)(89 105 143 95 99 137)(90 138 100 96 144 106)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 30 115 105)(2 29 116 104)(3 28 117 103)(4 27 118 102)(5 26 119 101)(6 25 120 100)(7 36 109 99)(8 35 110 98)(9 34 111 97)(10 33 112 108)(11 32 113 107)(12 31 114 106)(13 45 121 133)(14 44 122 144)(15 43 123 143)(16 42 124 142)(17 41 125 141)(18 40 126 140)(19 39 127 139)(20 38 128 138)(21 37 129 137)(22 48 130 136)(23 47 131 135)(24 46 132 134)(49 63 83 95)(50 62 84 94)(51 61 73 93)(52 72 74 92)(53 71 75 91)(54 70 76 90)(55 69 77 89)(56 68 78 88)(57 67 79 87)(58 66 80 86)(59 65 81 85)(60 64 82 96)

G:=sub<Sym(144)| (1,121,57,115,13,79)(2,122,58,116,14,80)(3,123,59,117,15,81)(4,124,60,118,16,82)(5,125,49,119,17,83)(6,126,50,120,18,84)(7,127,51,109,19,73)(8,128,52,110,20,74)(9,129,53,111,21,75)(10,130,54,112,22,76)(11,131,55,113,23,77)(12,132,56,114,24,78)(25,94,40,100,62,140)(26,95,41,101,63,141)(27,96,42,102,64,142)(28,85,43,103,65,143)(29,86,44,104,66,144)(30,87,45,105,67,133)(31,88,46,106,68,134)(32,89,47,107,69,135)(33,90,48,108,70,136)(34,91,37,97,71,137)(35,92,38,98,72,138)(36,93,39,99,61,139), (1,55,21,7,49,15)(2,16,50,8,22,56)(3,57,23,9,51,17)(4,18,52,10,24,58)(5,59,13,11,53,19)(6,20,54,12,14,60)(25,64,44,31,70,38)(26,39,71,32,45,65)(27,66,46,33,72,40)(28,41,61,34,47,67)(29,68,48,35,62,42)(30,43,63,36,37,69)(73,125,117,79,131,111)(74,112,132,80,118,126)(75,127,119,81,121,113)(76,114,122,82,120,128)(77,129,109,83,123,115)(78,116,124,84,110,130)(85,101,139,91,107,133)(86,134,108,92,140,102)(87,103,141,93,97,135)(88,136,98,94,142,104)(89,105,143,95,99,137)(90,138,100,96,144,106), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,30,115,105)(2,29,116,104)(3,28,117,103)(4,27,118,102)(5,26,119,101)(6,25,120,100)(7,36,109,99)(8,35,110,98)(9,34,111,97)(10,33,112,108)(11,32,113,107)(12,31,114,106)(13,45,121,133)(14,44,122,144)(15,43,123,143)(16,42,124,142)(17,41,125,141)(18,40,126,140)(19,39,127,139)(20,38,128,138)(21,37,129,137)(22,48,130,136)(23,47,131,135)(24,46,132,134)(49,63,83,95)(50,62,84,94)(51,61,73,93)(52,72,74,92)(53,71,75,91)(54,70,76,90)(55,69,77,89)(56,68,78,88)(57,67,79,87)(58,66,80,86)(59,65,81,85)(60,64,82,96)>;

G:=Group( (1,121,57,115,13,79)(2,122,58,116,14,80)(3,123,59,117,15,81)(4,124,60,118,16,82)(5,125,49,119,17,83)(6,126,50,120,18,84)(7,127,51,109,19,73)(8,128,52,110,20,74)(9,129,53,111,21,75)(10,130,54,112,22,76)(11,131,55,113,23,77)(12,132,56,114,24,78)(25,94,40,100,62,140)(26,95,41,101,63,141)(27,96,42,102,64,142)(28,85,43,103,65,143)(29,86,44,104,66,144)(30,87,45,105,67,133)(31,88,46,106,68,134)(32,89,47,107,69,135)(33,90,48,108,70,136)(34,91,37,97,71,137)(35,92,38,98,72,138)(36,93,39,99,61,139), (1,55,21,7,49,15)(2,16,50,8,22,56)(3,57,23,9,51,17)(4,18,52,10,24,58)(5,59,13,11,53,19)(6,20,54,12,14,60)(25,64,44,31,70,38)(26,39,71,32,45,65)(27,66,46,33,72,40)(28,41,61,34,47,67)(29,68,48,35,62,42)(30,43,63,36,37,69)(73,125,117,79,131,111)(74,112,132,80,118,126)(75,127,119,81,121,113)(76,114,122,82,120,128)(77,129,109,83,123,115)(78,116,124,84,110,130)(85,101,139,91,107,133)(86,134,108,92,140,102)(87,103,141,93,97,135)(88,136,98,94,142,104)(89,105,143,95,99,137)(90,138,100,96,144,106), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,30,115,105)(2,29,116,104)(3,28,117,103)(4,27,118,102)(5,26,119,101)(6,25,120,100)(7,36,109,99)(8,35,110,98)(9,34,111,97)(10,33,112,108)(11,32,113,107)(12,31,114,106)(13,45,121,133)(14,44,122,144)(15,43,123,143)(16,42,124,142)(17,41,125,141)(18,40,126,140)(19,39,127,139)(20,38,128,138)(21,37,129,137)(22,48,130,136)(23,47,131,135)(24,46,132,134)(49,63,83,95)(50,62,84,94)(51,61,73,93)(52,72,74,92)(53,71,75,91)(54,70,76,90)(55,69,77,89)(56,68,78,88)(57,67,79,87)(58,66,80,86)(59,65,81,85)(60,64,82,96) );

G=PermutationGroup([[(1,121,57,115,13,79),(2,122,58,116,14,80),(3,123,59,117,15,81),(4,124,60,118,16,82),(5,125,49,119,17,83),(6,126,50,120,18,84),(7,127,51,109,19,73),(8,128,52,110,20,74),(9,129,53,111,21,75),(10,130,54,112,22,76),(11,131,55,113,23,77),(12,132,56,114,24,78),(25,94,40,100,62,140),(26,95,41,101,63,141),(27,96,42,102,64,142),(28,85,43,103,65,143),(29,86,44,104,66,144),(30,87,45,105,67,133),(31,88,46,106,68,134),(32,89,47,107,69,135),(33,90,48,108,70,136),(34,91,37,97,71,137),(35,92,38,98,72,138),(36,93,39,99,61,139)], [(1,55,21,7,49,15),(2,16,50,8,22,56),(3,57,23,9,51,17),(4,18,52,10,24,58),(5,59,13,11,53,19),(6,20,54,12,14,60),(25,64,44,31,70,38),(26,39,71,32,45,65),(27,66,46,33,72,40),(28,41,61,34,47,67),(29,68,48,35,62,42),(30,43,63,36,37,69),(73,125,117,79,131,111),(74,112,132,80,118,126),(75,127,119,81,121,113),(76,114,122,82,120,128),(77,129,109,83,123,115),(78,116,124,84,110,130),(85,101,139,91,107,133),(86,134,108,92,140,102),(87,103,141,93,97,135),(88,136,98,94,142,104),(89,105,143,95,99,137),(90,138,100,96,144,106)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,30,115,105),(2,29,116,104),(3,28,117,103),(4,27,118,102),(5,26,119,101),(6,25,120,100),(7,36,109,99),(8,35,110,98),(9,34,111,97),(10,33,112,108),(11,32,113,107),(12,31,114,106),(13,45,121,133),(14,44,122,144),(15,43,123,143),(16,42,124,142),(17,41,125,141),(18,40,126,140),(19,39,127,139),(20,38,128,138),(21,37,129,137),(22,48,130,136),(23,47,131,135),(24,46,132,134),(49,63,83,95),(50,62,84,94),(51,61,73,93),(52,72,74,92),(53,71,75,91),(54,70,76,90),(55,69,77,89),(56,68,78,88),(57,67,79,87),(58,66,80,86),(59,65,81,85),(60,64,82,96)]])

66 conjugacy classes

class 1 2A2B2C3A···3E3F3G3H3I4A4B4C4D4E4F6A···6O6P···6AA12A···12P12Q12R12S12T
order12223···333334444446···66···612···1212121212
size11112···2444466181854542···24···46···618181818

66 irreducible representations

dim1111122222222224444
type+++++++--+-++-+-
imageC1C2C2C2C4S3S3D4Q8Dic3D6Dic6C4×S3D12C3⋊D4S32S3×Dic3C3⋊D12C322Q8
kernelC62.80D6Dic3×C3×C6C6×C3⋊Dic3C2×C335C4C32×Dic3C6×Dic3C2×C3⋊Dic3C32×C6C32×C6C3×Dic3C62C3×C6C3×C6C3×C6C3×C6C2×C6C6C6C6
# reps11114411185102824444

Matrix representation of C62.80D6 in GL6(𝔽13)

1000000
040000
0011200
001000
000010
000001
,
1200000
0120000
001000
000100
0000121
0000120
,
1100000
060000
001000
000100
000001
000010
,
070000
1100000
000500
005000
000001
000010

G:=sub<GL(6,GF(13))| [10,0,0,0,0,0,0,4,0,0,0,0,0,0,1,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[11,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,11,0,0,0,0,7,0,0,0,0,0,0,0,0,5,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C62.80D6 in GAP, Magma, Sage, TeX

C_6^2._{80}D_6
% in TeX

G:=Group("C6^2.80D6");
// GroupNames label

G:=SmallGroup(432,452);
// by ID

G=gap.SmallGroup(432,452);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,141,36,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=b^3,d^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^3*c^5>;
// generators/relations

׿
×
𝔽